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Abstract 

We demonstrate a new generalized least-squares fitting method which can be used to estimate 

the slope of the best-fitting straight line that results when two separate data sets which are 

expected to be linearly correlated are subject to different uncertainties in their measurements. 

The algorithm determines not only the optimum slope, but also produces estimates of the 

intrinsic errors associated with each data set. It requires almost no initial information about 

the errors in each data set. 
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Executive Summary 

One of the problems that frequently confronts an experimentalist is that of fitting a straight 

line to data, that is, the problem of determining the functional relationship between two 

variables. A least-squares calculation is the most common approach to this problem and, in 

its simplest form, one variable is subject to error while the other is error-free. This procedure 

is described in almost all elementary books on statistics. 

A slightly more complex case is that both variables have errors, which are well known. 

Considerable work has been done on fitting procedures which take into account errors in 

both variables. These fitting procedures generally work very well for the tasks for which 

they are assigned. However, there are times when two data sets are compared in which the 

intrinsic measurement errors of one or both variables are unknown. In this case, there is 

no algorithm available to determine the best-fit line. The main objective of this paper is to 

demonstrate a new procedure for this objective. 

In this paper, we demonstrate a new generalized least-squares fitting method which can be 

used to estimate the slope of the best-fitting straight line that results when two separate 

data sets which are expected to be linearly correlated are subject to different uncertainties 

in their measurements. The algorithm determines not only the optimum slope, but also 

produces estimates of the intrinsic errors associated with each data set. It requires almost 

no initial information about the errors in each data set. The algorithm works best if the 

user knows which of the two variables has the smallest intrinsic error, but is not limited to 

this condition. We hope that this process will find application in a wide range of situations, 

e.g., ranging from radar and satellite measurements to any physical measurements. 
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1    Introduction 

Least-squares techniques for examining best-fit lines to correlated data sets are well estab- 

lished, but in general are restricted to cases in which the errors in the two data sets being 

compared are known. The simplest case is that in which there is no error in one variable 

(usually plotted as the abscissa), and the error in the other variable is known. This proce- 

dure is described in almost all elementary books on statistics [e.g., Young, 1962; Bevington, 

1969; Daniel and Wood, 1971; Brandt, 1976; Taylor, 1982]. 

A slightly more complex case is that in which both variables have errors, but both errors are 

well known. Examples of such process have been shown by (amongst others) York [1966], 

Barker [1974], Orear [1982], Lybanon [1984], Miller and Dunn [1988], Reed [1989, 1992], and 

Jolivette [1993]. These fitting procedures generally work very well for the tasks for which 

they are assigned. 

However, there are times when two data sets are compared in which the intrinsic measure- 

ment errors of one or both variables are unknown. In this case, there is no algorithm available 

to determine the best-fit line. The purpose of this paper is to demonstrate a new procedure 

for this objective. 

This paper is broken up as follows. We begin by simulating some data using computer 

techniques, in which the intrinsic errors are pre-specified. We then demonstrate the effects of 

employing existing methods of data analysis to these data sets, and point out the limitations 

of these procedures. We then demonstrate how these standard processes lead to our new 

procedure, and develop our new algorithm. Finally, we use new artificially generated data 

to demonstrate the application of our new method. 

2     Standard analysis procedures 

As an initial study, we used computer-generated data to re-visit standard least-squares fitting 

procedures. Our model works as follows. We generate two data sets, one representing the 

abscissa (a;;), and the other the ordinate (j/,-). These are generated by randomly selecting 

values Xi from a Gaussian distribution with a pre-specified standard deviation. In our first 

case, we will demonstrate the situation for a standard deviation of T,x = 40 and Y,y = 40. 

We then calculated ?/,• values using the expression 



tfi = 9o Xi + ci (1) 

For our initial calculations, we have chosen g0 = 1, which produces a standard deviation 

in the y{ values (£„) equal to T,x. Notice that these E values are not errors, but represent 

the spread in our raw data points. Other options are considered later. This process then 

gave a straight line graph. Our next step was to partly randomize the points. For each 

point, we added a random number to the x{ value, and a different random number to the 

Vi value, where each randomly generated number was derived from a Gaussian distribution 

with standard deviations ax and ay respectively. We generated about 300 points per such 

realization in the first instance. 

Our next step was to perform various types of least-squares fitting procedures. We removed 

the mean x value from the x{ values, and the mean y value from the y{ values, and then 

applied standard fitting procedures in two different ways. Firstly, we fitted the data assuming 

that all the Xi values have no error. This gave an equation which we denote as 

Vi = 9x Xi + c2 (2) 

Because the data were normally distributed, as were the errors, we found that c2 was generally 

close to zero. We will therefore not further investigate this value, and will concentrate on the 

parameter gx. For real data, we assume that the user will have already removed the means 

before applying our method. 

Next we fitted the same data assuming that the ?/,- values have no error, and obtained lines 

of the type 

xi = (i/gy)yi + c3 (3) 

or 

Vi = 9y Xi + c4 (4) 

As a final check, we also fitted our data using the algorithm described by York [1966], in 

which we used our known values for ax and ay to estimate the mean slope. We will denote this 



100 

50 - 

*       0 - 

-50 - 

-100 
-1 

a,=5, ay=10 

'     gt=0.93 

|     .     i   -r—r     ,-,-r i     i     j     i     i     i     i ^ 

■ «          /    .' 
.     g,= 1.18 a   *a a/   ,' 

'   g»=i-oi ■ ■ ■ y"^ 

VGA7*» 

• 
■ vw ■ 

«  *v^s 1   1 

. 
."*ijw :■■■ 

. 
. ^SJ?'*m' - 

■ *%v .   : " . 
■ ■ jPrj**    • 
V ■ 

} - 
■   g.    YJ> ̂ *    a ■ 

a " 

&>     g r                              ! 
■ 

■   •   1   •   >   l.,l..„ 

00 

a,=5, ay=20 
■  • 

g. =0.77 
"        /   " /■'' 

•   g. = 1.85 *    ml  *   /•' 
'•                 7    " X* 

'_  g* = 1.07 

a 
a» 

a 

*               w       X' *           m         7»     X     / 

"        «    M*    "/»  X /* 
* • ■   / J«L« * ■ 

■'."i'Äf   *;■'■; " 

■ 

a 

va a /*            ;        a ~ g. S*A 

ß- 

a   ,*Y 

v     " 
g> 

- A"   i 
a/          ■            J 
/a                        ! 

, , ,  ,. i ,  , . . i .,.., . . 

-50 50 100-100 -50 0 50 100 

Figure 1: Examples of the slopes obtained from three different methods applied to some 
sample data. The symbols gx and gy refer to the slopes obtained from the regressions y on x 
and x on y respectively, while gxy refers to the slope obtained from the algorithm described 
by York [1966]. crx and ay are measurement errors in x and y respectively. 

estimate as gxy. This latter step is not required, but was simply done as a consistency check. 

We then repeated this process for each (ax, ay) pair for many different realizations (typically 

300). Figure 1 shows examples of our fitting attempts for cases with (ax = 5,<ry = 10) and 

(<jx = 5,<r„ = 20). 

As noted, we have repeated such fits for many hundreds of different realizations, and for 

different combinations of crx and ay, and different numbers of points per sample. The results 

of the mean slopes gx, gy, and gxy, and associated standard deviations for the mean (the 

latter being denoted as Agx, Agy, and Agxy) are shown as contour plots in Figure 2. It is 

clear that the York [1966] algorithm has worked well (bottom panel), with all slope estimates 

being close to unity (the original slope). We will therefore not further discuss the results of 

the York algorithm. 

However, the distributions of gx and gy are striking in the way that the contours are aligned 

almost parallel to the axes (see Figure 2). It is this rather special alignment which permits 

us to develop the algorithm described in this paper. The arrangement of these lines shows 
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Figure 2: Slopes obtained from three different methods as a function ax and ay. gx and gy 

refer to the slopes obtained from the regressions y on x and x on y respectively. gxy refers 
to the slope obtained from the algorithm described by York [1966]. ax and ay are intrinsic 
noise and measurement errors in x and y respectively. A^, A^, and Agxy are the standard 
deviations for the means (standard error) of these various slopes. 



that the estimate of gx, although erroneous, is pretty much independent of ay. Likewise, gy 

depends very weakly on ax. Thus we may write 

9x ~ 9x M    ;     gy » gy (<ry) (5) 

There are slight deviations from this law for small ax and large ay in the top graph, but 

otherwise these dependencies are fairly true. Because of this striking character, we then 

decided to develop an analytical expression for gx as a function of ax. Our results are shown 

in Figure 3, where we plot gx as a function of ax for selected ax. We have actually taken the 

case ay = 0, but as noted gx depends only very weakly on ay. We have also re-plotted our 

ordinate and abscissa as cr^/E^ and gx/g0. We have done this because we expect that these 

scalings should apply, and we have confirmed this by repeating our analyses using different 

values of g0 and T,x. Henceforth we will generally work with such normalized values. 

At this point, we need to indicate an important assumption concerning the sign of the slope. 

For our preceding examples, we used cases for which the best fit lines between data sets had 

a positive slope. This may seem restrictive, but in fact it is not, as will now be seen. In 

any realistic situation in which the data show reasonable correlation, gx and gy will have the 

same sign, so it is easily determined what the sign of the true best fit-slope, g0, should be. If 

it is negative, we can simply reverse the signs of all of the yt- values, and the best fit line will 

then have positive slope. We may then apply the algorithm, and upon its completion (and 

determination of the best fit slope g~0), we may then get our true best-fit slope by reversing 

the sign of g0. Thus our restriction to positively correlated data is not a limitation of the 

technique, and the rest of the discussion will proceed assuming such positively correlated 

data. 
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Figure 3: Variation of o-x/T,x as a function of gx/g0. The solid line with asterisk symbols 
is the empirical formula given by equation (6), and the diamond symbols are the values 
calculated from direct application of the numerical model described in Section 2. 



We may now return to our developmental discussion. Following generation of Figure 3, we 

determined an analytical function which fitted these points. The curve is continuous and 

continuously differentiable, and is plotted as the solid line in the figure. The expression we 

have used is complicated, but quite accurate, and is given by 

—%- = (1 - ^) + (1 - ^)9 - 0.049 sin [3.391 (^ + 0.255)2] 
2.15 E^ g0 g0 

ygo ' J 

+0.01 exp [     °°' } + 0.007 exp \-^  '    ' i 
2 2(0.1)2   J  ^L     2(0.15) 

-(^-0.94)2 -(fa-2) 
+0'°12 6XP'    2(0.022)'    ' + °'025 eX» [-V2' 

0.05   J       L    0.1 6" 
+0.01 exp [-^—^]cos[^—^ + -] (6) 

A more succinct formula may be found in due course, but for now our purpose is just to 

demonstrate our method. Furthermore, we also recognize that the relation between g0/gy 

and <jy obeys the same expression (although note that we use g0/gy here compared to gx/g0 

above). 

^p> =(!_*>) + (!_ 9o)9 _ 0 049 gin [3>391 (£o     0 255)2] 

-(f-1)2 -(^-0.58)2 

+°-01 6XP H^ijH + °-°07 «* t     ?(0.15)2     1 

-(^-0.94)2 -(^-2) 
+0'°12 CXP [    2(0.022)*    ' + °-°25 CXP [      0T2] 

i.e., as above with gx/g0 replaced by (gy/go)'1- 

This now means that if we have a set of points (a;;, ?/,•), and we know the intrinsic error in 

one of these variables, we can determine uniquely the "true" best fit line g0 and also the 

intrinsic error in the other variable. For example, suppose the user knows ax. Then, one 

can calculate the experimental standard deviations <;x and <;y for the two data sets. These 

standard deviations include both the natural spread of the data and the intrinsic errors. Then 

we may determine an estimator for E^, which we will denote as E^, through the relation 



E* = y/$ - crl (8) 

Next, the user applies standard fitting procedures, first assuming ox = 0 to get gx, and then 

ay = 0 to get £„. One may use Figure 3 or equation (6) to determine an estimator for gx/g0 

(which we will denote as g~xo) from the knowledge of ax/tx. Thus, knowing gx, and gx/g0, 

one can readily determine g0, our estimate of g0. Furthermore, now that g0 is known, the 

user can determine an estimator for gy/g0 (which we will denote as g~yo). Further application 

of equation (7) then permits determination of an estimator for ay/Zy. This may in turn be 

used to determine Ey through the relation 

4 = ?„/ 
i l + (#)2 (9) '£ y 

Since <ry - ^E2, + 0-2, an estimator for ay can be uniquely determined as well. Hence given 

ax, the user can determine the slope of the best-fit line, g~0, and also determine dy. This is 

useful, but it is not the full story. 

The above description assumes that the user knows the intrinsic error ax. But what if this 

is not known ? Can we determine it ? 

Suppose we "guess" ax, and carry out the above process. Then we can obtain o~ XL E 

and ay for this proposed value of ax. However, we do not know if we have chosen the correct 

value for ax. This dilemma can be solved, because there is one extra piece of information 

available which has not yet been used. The means have been removed, so that if there were 

no random errors, we would expect Zy/Zx should equal g0. Hence we may say that, to quite 
high accuracy, 

ty/tx ~ g0 (10) 

It is essential that this condition is closely satisfied in order for our selection of ax to be 

considered as acceptable. We may thus use this as our final diagnostic test. If we try 

different values of crx, and repeat the above process, we can examine the ratio (£y/Ex)/g0, 

and choose the value of ax which allows this parameter to be closest to 1. Alternatively, we 

may find the value where the parameter H = [((Ey/£x)/g0) - 1] is closest to zero. 



A. 
B. 
C. 

D. 

E. 
F. 
G. 

H. 

Gl. 

G2. 

G3. 
G4. 
G5. 

G6. 

G7. 

G8. 
G9. 

Remove the means from both data sets. 
Do standard least-squares fit to obtain gx and gy. 
If gx and gy are negative, reverse the signs on all ?/,- values, 
and the signs of gx and gy. 
Find experimental standard deviations of the data sets, <;x and qy. 
(Note these include both natural spread and intrinsic errors). 
Determine appropriate steps for <TX, (let these step sizes be denoted as Aax). 
Step ax from zero, upward in steps of Acrx. 
For each value of ax, do the following. 

Find S, = y/t^i- 
Find crx/Tix, and then use equation (6) to determine an estimate 
for gx/g0 (call it g~xo). 

From gxo, and from known value of gx, determine g0 (an estimate of g0). 
From g0, and the previously determined value of gyi determine g~yo = gy/g0. 
Determine Ry = o^/Ej, from equation (7). 

Determine Ej, from T,y — qy/yl + Ry . 

Determine <j„ = 

Now calculate E = ((Ey/Y,x)/g0) - 1. 
Go to Gl, and repeat the loop Gl to G8 and search for the point 
where E is closest to zero. 

If a sign reversal was required in step C, reverse the signs of all 
the j/i values again, and reverse the sign of the resulting slope g0. 
Add the means back to the resulting equation. 

Note: We recommend choosing the {z,} and {yi} values so that crx < ay. 

Table 1: Procedure for unique determination of g0, ax, and ay. 

Thus repeated application of successive values of ax, coupled with the above test for E = 0, 

permit us to determine the best estimator for ax. Hence this iterative approach allows us 

to uniquely determine estimates for g0, ax, and ay. No prior knowledge about any of these 

parameters is required, although we will show shortly that from a pragmatic perspective it 

is wisest to choose the variables {xi} and {yi} such that ax < uy. Our basic procedure is 

summarized in Table 1. 



crx ^-•x <Tx <Jy Vy «V 9x 9~y 9o Sy/Ej; S 

0.50 38.62 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.984 16.9 
1.00 38.61 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.984 16.6 
1.50 38.59 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.984 16.2 
2.00 38.57 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.985 15.6 
2.50 38.54 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.985 14.8 
3.00 38.50 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.986 13.9 
3.50 38.46 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.987 12.8 
4.00 38.41 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.989 11.5 
4.50 38.36 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.990 10.0 
5.00 38.30 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.992 8.4 
5.50 38.23 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.994 6.6 
6.00 38.15 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.996 4.6 
6.50 38.07 38.62 16.43 37.98 41.38 0.96 1.19 1.000 0.998 2.4 
7.00 37.98 38.62 16.39 38.00 41.38 0.96 1.19 1.001 1.000 1.4 
7.50 37.89 38.62 16.20 38.08 41.38 0.96 1.19 1.005 1.005 0.3 
8.00 37.78 38.62 15.99 38.17 41.38 0.96 1.19 1.009 1.010 0.0 
8.50 37.67 38.62 15.76 38.26 41.38 0.96 1.19 1.014 1.016 -0.8 
9.00 37.56 38.62 15.51 38.36 41.38 0.96 1.19 1.019 1.021 -1.9 
9.50 37.43 38.62 15.22 38.48 41.38 0.96 1.19 1.025 1.028 -2.8 

10.00 37.30 38.62 14.87 38.62 41.38 0.96 1.19 1.032 1.035 -3.1 
10.50 37.17 38.62 14.43 38.78 41.38 0.96 1.19 1.040 1.044 -3.0 
11.00 37.02 38.62 13.87 38.99 41.38 0.96 1.19 1.051 1.053 -2.0 
11.50 36.87 38.62 13.26 39.20 41.38 0.96 1.19 1.063 1.063 -2.6 
12.00 36.71 38.62 12.70 39.38 41.38 0.96 1.19 1.074 1.073 -2.8 
12.50 36.54 38.62 12.20 39.54 41.38 0.96 1.19 1.084 1.082 -3.1 
13.00 36.37 38.62 11.73 39.68 41.38 0.96 1.19 1.095 1.091 -3.3 
13.50 36.18 38.62 11.21 39.83 41.38 0.96 1.19 1.105 1.101 -3.6 
14.00 35.99 38.62 10.53 40.02 41.38 0.96 1.19 1.117 1.112 -4.2 
14.50 35.80 38.62 9.59 40.25 41.38 0.96 1.19 1.128 1.125 -4.3 
15.00 35.59 38.62 8.36 40.53 41.38 0.96 1.19 1.141 1.139 -4.6 

Table 2: Sequence of calculations for the parameter E when input values are S^ = 40, ax = 8, 
Ey = 40, and ay = 16. 

3    Tests of our models 

Having established our numerical iterative model for g0, ds, and <ry, it is of course necessary 

to test its accuracy. For this, we again turn to simulation. 

We repeated the process described in section 2 to generate our original {x{} and {yj values, 

but this time for a wide variety of values for g0, crx, and ay. Then, for each data set, we 

applied the algorithm described in Table 1. Table 2 shows a sequence of calculations for ax 

in steps of 0.5 (un-normalized units). The important parameter to observe is E, as written 

in the last column of the table. In this particular example, we see that E passes through zero 

10 



<fx t-'x Car ffy Sy «V gx 9~y 9~o 2jy/£-ix 2 

0.50 40.99 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.944 28.8 
1.00 40.98 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.945 28.6 
1.50 40.97 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.945 28.2 
2.00 40.95 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.946 27.6 
2.50 40.92 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.948 27.0 
3.00 40.88 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.949 26.1 
3.50 40.84 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.951 25.1 
4.00 40.80 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.953 24.0 
4.50 40.75 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.956 22.7 
5.00 40.69 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.959 21.2 
5.50 40.62 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.962 19.6 
6.00 40.55 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.965 17.8 
6.50 40.48 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.969 15.9 
7.00 40.39 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.973 13.8 
7.50 40.30 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.977 11.5 
8.00 40.21 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.982 9.1 
8.50 40.10 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.987 6.5 
9.00 39.99 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.993 3.8 
9.50 39.88 40.99 21.39 79.69 82.51     1 89 2.14 2.000 1.998 0.9 

10.00 39.76 40.99 SO. 72 79.87 82.51    1 89 2.14 2.009 2.009 0.1 
10.50 39.63 40.99 19.63 80.14 82.51     1 89 2.14 2.021 2.022 -0.7 
11.00 39.49 40.99 18.11 80.50 82.51     1 89 2.14 2.036 2.038 -1.2 
11.50 39.35 40.99 15.97 80.95 82.51     1 89 2.14 2.054 2.057 -1.4 
12.00 39.20 40.99 13.36 81.42 82.51     1 89 2.14 2.076 2.077 -1.8 
12.50 39.04 40.99 10.75 81.81 82.51     1 89 2.14 2.097 2.095 -2.6 
13.00 38.88 40.99 8.31 82.09 82.51     1 89 2.14 2.117 2.112 -2.8 
13.50 38.71 40.99 5.93 82.30 82.51     1 89 2.14 2.136 2.126 -4.6 
14.00 38.53 40.99 3.50 82.44 82.51     1 89 2.14 2.155 2.140 -7.4 
14.50 38.34 40.99 0.89 82.51 82.51     1 89 2.14 2.175 2.152 -10.9 
15.00 38.15 40.99 1.96 82.49 82.51     1 89 2.14 2.196 2.162 -15.7 

Table 3:   Sequence of calculations for the parameter H when input values are Ea 

ax = 10, E„ = 80, and ay = 20. 

40, 

at ax = 8.0 (highlighted in italics). We see that our program estimates cry to be 15.99 and 

g0 to be 1.009. Our estimates are very close to our original input values ax = 8.0, ay = 16.0, 

and g0 = 1.0. The fact that our best estimate for g0 is about 1% higher than the true value 

is a concern, but not a major one. There are clearly cases which give a best fit g0 which is 

better than our final estimate, especially at low <JX and high ay, but these have erroneous 

estimates of ax and ay. Our final estimate gives the best possible simultaneous combination 

of estimates for g0, ax, and ay, and this is the most important point. These small errors 

probably arise in part because the equation (5) are not exactly true. 

Table 3 shows another example of a different realization and alternative input values. In this 
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case, ~ passes through zero at ax = 10.0 (highlighted in italics) when the corresponding ay 

and g0 values are 20.72 and 2.009 respectively. These estimates are again very close to our 

original input values ax = 10.0, ay = 20.0, and g0 = 2.0. Tables 2 and 3 clearly demonstrate 

that our algorithm determines not only the optimum slope, but also produces estimates of 

the intrinsic errors associated with each data set. Of course in a realistic application of our 

algorithm, we do not need to produce tables like those just shown for every situation. It is 

adequate to let the computer search for the zero crossing point of E, and this is what we 
normally do. 

We have repeated this procedure for many different combinations of ax, ay, and g0, and 

for many different realizations.  Figure 4 shows a collective graph of the axftx and a ft 

values which we have estimated compared to the original input values for many different 

realizations.   The relationship is clearly quite linear and confirms that our algorithm is 
making sensible predictions. 

Figure 5 shows differences between our estimate of g0 relative to g0 after subtraction of 

unity. We clearly produce accuracy of ~ 0.1% to 1% for the slope of the line. Thus we have 

demonstrated the validity of our technique, at least for the case in which the raw data and 

the errors are normally distributed. 

We have also repeated our analyses for different numbers of points within any one data set. 

We have found that provided there are greater than 50 points per data set, we produce 

error estimators for dx and dy which have absolute errors (6ax and 6ay) of less than about 

2.5% of E, and Ey respectively (see Figure 4; the spread in <jx/£x and dy/ty is about 

0.05). However, when lesser numbers of points are used per realization, the performance 

degrades considerably. Data sets of 20 points become substantially less reliable with regard 

to estimating ax and ay. We recommend that this procedure should be restricted to cases 

in which there are at least 30 points, and preferably 50 or more. 

We should finish with a final comment about multiple minima. As noted, we have created 

tables like Table 2 for many combinations of g0, ax, and ay (although, as we have said, in 

any practical situation we allow the computer program to find the zero points of E). We 

have noted that for some cases there are multiple zero-crossings, especially for cases of large 

<Ty. This problem is worse if ax > ay, so we recommend that if users have any a-priori 

knowledge about their data, they should choose the {x,-} values as those with the smaller 

ax. Determinations should be stopped when <jx exceeds Jy, since this very often removes any 

other zero-crossing cases. If no a-priori knowledge is available, both combinations should be 

attempted (i.e., first use data set 1 as {Xi}, and then use data set 2 as {x{}). 
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0.0 0.2 0.4 0.6 
a„/X, , (Ty/ly (model) 

0.8 1.0 

Figure 4: Comparison between original input errors and estimated values obtained from our 
algorithm, for many different realizations. 
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Figure 5: Differences between our estimate of g0 relative to g0 after subtraction of unity. 
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10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

2 
2 
2 

2 
2 
2 
2 

3 
2 
2 
2 

3 
2 
2 
2 

3 
2 
2 
2 

4 
3 
2 
2 

4 5 5 
3 3 3 
3 3 3 
2 2 2 

Table 4: Number of zero-crossings of E for a particular combination of crx and c^, for Sa 40 
and E„ = 40. 

For completeness, we show in Table 4 an example of the number of zero-crossings of E for 

particular combinations of crx and ay. Clearly, for a large number of combinations there is 

only one minimum. However, there are cases, especially for large ay and small <rx, (where 

we emphasize that these are the "true" intrinsic errors), for which there are several zero- 

crossings. As already noted, we recommend dealing with cases where the user knows that 

ax < (Ty, and we would not recommend using our technique if the user detects multiple zero- 

crossings in the region dx/Ex < <ry/Ey. In fact, most of the "extra" zero crossings associated 

with the cases of small ax and large ay just discussed (see Table 4) arise in fact when our 

assumed <JX values exceed äy. This is a nonsense solution and is avoided if we do not carry 

our iterations in Table 1 past the case dx = <jy. 

Nevertheless, There are clearly a wide range of cases in which we can uniquely define esti- 

mates of g0, (Tx, and ay. If the user can determine that the error in one coordinate is less 

than the other, and uses this as the x variable (abscissa), then the multiple crossings are 

rarely a concern. The first zero encountered is generally the correct combination of g0, dx, 

and <T„. 
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4     Conclusions 

A new method for least-squares fitting of straight-line data has been presented which per- 

mits optimal fitting and simultaneous determination of intrinsic errors for both the abscissa 

and the ordinate. It assumes that the original data and the intrinsic errors are normally 

distributed. The algorithm works best if the user knows which of the two variables has the 

smallest intrinsic error, but is not limited to this condition. There are occasions when the 

procedure has multiple solutions, but these are relatively rare and can be dealt with if the 

user exercises due care. We anticipate that this process should find application in a wide 

range of situations. 
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